(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
lt(0, s(x)) → true
lt(x, 0) → false
lt(s(x), s(y)) → lt(x, y)
minus(x, y) → help(lt(y, x), x, y)
help(true, x, y) → s(minus(x, s(y)))
help(false, x, y) → 0
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
lt(0', s(x)) → true
lt(x, 0') → false
lt(s(x), s(y)) → lt(x, y)
minus(x, y) → help(lt(y, x), x, y)
help(true, x, y) → s(minus(x, s(y)))
help(false, x, y) → 0'
S is empty.
Rewrite Strategy: INNERMOST
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
Innermost TRS:
Rules:
lt(0', s(x)) → true
lt(x, 0') → false
lt(s(x), s(y)) → lt(x, y)
minus(x, y) → help(lt(y, x), x, y)
help(true, x, y) → s(minus(x, s(y)))
help(false, x, y) → 0'
Types:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
minus :: 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
lt,
minusThey will be analysed ascendingly in the following order:
lt < minus
(6) Obligation:
Innermost TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
minus(
x,
y) →
help(
lt(
y,
x),
x,
y)
help(
true,
x,
y) →
s(
minus(
x,
s(
y)))
help(
false,
x,
y) →
0'Types:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
minus :: 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
lt, minus
They will be analysed ascendingly in the following order:
lt < minus
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
lt(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
+(
1,
n5_0))) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
lt(gen_0':s3_0(0), gen_0':s3_0(+(1, 0))) →RΩ(1)
true
Induction Step:
lt(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(1, +(n5_0, 1)))) →RΩ(1)
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
Innermost TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
minus(
x,
y) →
help(
lt(
y,
x),
x,
y)
help(
true,
x,
y) →
s(
minus(
x,
s(
y)))
help(
false,
x,
y) →
0'Types:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
minus :: 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(11) Obligation:
Innermost TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
minus(
x,
y) →
help(
lt(
y,
x),
x,
y)
help(
true,
x,
y) →
s(
minus(
x,
s(
y)))
help(
false,
x,
y) →
0'Types:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
minus :: 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
lt(
0',
s(
x)) →
truelt(
x,
0') →
falselt(
s(
x),
s(
y)) →
lt(
x,
y)
minus(
x,
y) →
help(
lt(
y,
x),
x,
y)
help(
true,
x,
y) →
s(
minus(
x,
s(
y)))
help(
false,
x,
y) →
0'Types:
lt :: 0':s → 0':s → true:false
0' :: 0':s
s :: 0':s → 0':s
true :: true:false
false :: true:false
minus :: 0':s → 0':s → 0':s
help :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
lt(gen_0':s3_0(n5_0), gen_0':s3_0(+(1, n5_0))) → true, rt ∈ Ω(1 + n50)
(16) BOUNDS(n^1, INF)